基于KASP技术的小麦条锈菌SNP分子标记 开发与评价

孟 岩 杨彩柏 姜舒畅 黄丽丽 康振生* 詹刚明*

(西北农林科技大学植物保护学院,旱区作物逆境生物学国家重点实验室,陕西杨凌 712100)

摘要:为开发用于小麦条锈菌 Puccinia striiformis f. sp. tritici 群体遗传研究的竞争性等位基因特异性 PCR-单核苷酸 多态性 (kompetitive allele specific PCR-single nucleotide polymorphism, KASP-SNP)标记,以中国小麦条锈菌流行小种 CYR32的基因组为参考,与美国小麦条锈菌流行小种 PST78和印度小麦条锈菌流行小种 38S102的基因组进行比对,根据比对到的 SNP 位点设计 KASP-SNP 引物,用 64个中国小麦条锈菌标样对其进行筛选,同时用 13 对多态性引物组成的简单重复序列(simple sequence repeat, SSR)分子标记分析这 64 个标样,并利用 Powermarker 3.25 和 Structure 2.3 软件通过多态性指数和群体遗传结构分析来评价 KASP-SNP 和 SSR 两种分子标记。结果显示,共比对到 29 929 个 SNP 位点,设计出 462 对 KASP-SNP 引物,经64 个中国小麦条锈菌标样筛选到 43 对多态性较好的引物,所开发的这 43 对 KASP-SNP 引物多态性信息含量指数平均为 0.346,基因多样性指数平均为 0.420,而 SSR 引物的 2种指数分别为 0.237 和 0.265,前者较后者分别高出 46.0% 和 58.5%。2种标记结果的群体遗传结构分析可得到类似结果,最佳聚类数 K值都为 4,云南菌系是遗传结构相对最复杂的菌系,但个别菌株的遗传划分存在较大差异。表明本研究开发的 KASP-SNP 分子标记多态性较 SSR 分子标记更加丰富,具有较好的应用前景。 关键词:小麦条锈菌; SNP 分子标记; SSR 分子标记; KASP 技术

Development and evaluation of SNP molecular markers of wheat stripe rust based on KASP technology

MENG Yan YANG Caibo JIANG Shuchang HUANG Lili KANG Zhensheng^{*} ZHAN Gangming^{*} (State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China)

Abstract: To develop kompetitive allele specific PCR-single nucleotide polymorphism (KASP-SNP) primers for population genetic study of *Puccinia striiformis* f. sp. *tritici* (PST), the genome sequence of the epidemic race CYR32 in China was used as a reference in this study and compared with race PST78 in US and 38S102 in India. KASP-SNP primers were designed according to SNP sites, and polymorphism at each SNP locus was determined using 64 Chinese PST isolates. Meanwhile, 13 pairs of polymorphic simple sequence repeat (SSR) markers were also used to analyze these PST populations for comparison. Powermarker 3.25 and Structure 2.3 were used to evaluate these two molecular marker systems. The results showed that totally 29 929 SNP sites were found, and 462 pairs of KASP-SNP primers were designed, among which 43 pairs of polymorphic SNP primers were obtained. The average polymorphism information content (PIC) index of the SNP primers was 0.346 and the gene diversity index

基金项目:国家重点研发计划(2017YFD0201700,2018YFD0200400),国家自然科学基金(31871918)

^{*} 通信作者 (Authors for correspondence), E-mail: kangzs@nwsuaf.edu.cn, zhangangming@nwsuaf.edu.cn 收稿日期: 2019-03-14

was 0.420, and both indexes were higher than those of the SSR primers, which were 0.237, 0.265, with the former 46.0% and 58.5% higher than the latter, respectively. The results of KASP-SNP markers were more credible when considering the polymorphism information content, and the optimum K values were both 4. Yunnan and Hubei PST populations had the simplest and the most complex genetic structure. The two marker systems supported similar patterns of population structure, while the genetic division of individual isolates was quite different. The KASP-SNP molecular marker was more polymorphic than SSR molecular markers, and therefore showed a good prospect for application. **Key words:** wheat stripe rust; SNP molecular marker; SSR molecular marker; KASP technology

小麦是世界三大粮食作物之一,能否高产稳产 关乎世界粮食安全(http://www.fao.org)。由条形柄 锈菌小麦专化型Puccinia striiformis f. sp. tritici引起 的小麦条锈病是世界范围内小麦产区最重要的真菌 病害之一,严重威胁全球小麦主产国家的粮食安全 生产(李振岐和商鸿生,1989;康振生等,2015),我国 小麦条锈病流行年份可导致小麦减产40%以上,甚 至绝收(马占鸿,2018)。国内外生产实践证明,种植 抗病品种是防治小麦条锈病最经济有效的措施(康 振生等,2015;赵杰等,2018)。然而,由于小麦条锈 菌新致病小种的不断产生,频繁导致小麦品种抗锈 性丧失,造成病害大流行(李振岐和曾士迈,2002)。 因此,准确监测小麦条锈菌群体的毒性结构与遗传 结构,是合理利用抗病小麦品种防治条锈病中一项 必不可少的工作。目前国内外均采用由抗性不同的 小麦品种构成的鉴别寄主体系来开展小麦条锈菌生 理小种鉴定与毒性组成分析,该项技术在小麦的病 害预测、抗病品种选育与品种合理布局中发挥了重 要作用(陈万权等,2013)。然而,这项技术操作繁 琐,费工耗时,且小麦条锈菌样品鉴定数量十分有 限,往往难以反映田间小麦条锈菌毒性和遗传结构 的实际情况。因此,研究人员一直在探索研发准确 监测小麦条锈菌群体毒性结构和遗传结构的快速、 高通量技术(陈万权等,2013;Hubbard et al.,2015), 而现代分子标记技术的快速发展使解决这一难题成 为可能。

自20世纪90年代开始,基于PCR的分子标记 技术已成为小麦条锈菌群体遗传结构和多样性研究 的重要工具,被广泛运用的分子标记主要有随机扩 增多态DNA(randomly amplified polymorphic DNA, RAPD)、扩增片段长度多态性(amplified fragment length polymorphism, AFLP)、简单重复序列(simple sequence repeat, SSR)等。2000年前的相关研究主 要采用 RAPD 分子标记(Chen et al., 1993; Shan et al., 1998), 2000年后主要采用 SSR 分子标记(Ali et al.,2014;Zhan et al.,2016;姜舒畅等,2018)和AFLP 分子标记(Justesen et al.,2002),虽然这2种分子标 记也能有效揭示田间小麦条锈菌的传播规律与遗传 变异,但存在较大局限性,主要问题是多态性位点数 及信息量不够,难以支撑遗传背景较为单一的小麦 条锈菌群体的遗传分析(Zhan et al.,2015)及其与毒 性基因/无毒基因的关联定位(Tian et al.,2016)。此 外,现有的各种分子标记大多基于常规的*Taq*-PCR 及聚丙烯酰胺凝胶电泳技术,存在着较多缺陷,如对 样本质量要求较高、试验材料准备步骤繁琐(Hubbard et al.,2015)、试验结果读取带有主观性(吴澎 等,2019)等。

单核苷酸多态性(single-nucleotide polymorphism, SNP)是基因组DNA中存在最为丰富的一类 遗传变异(Brookes, 1999),并且可以进行自动化检 测(吴澎等,2019)。相较于传统的各类分子标记, SNP分子标记更具潜力(Brito & Edwards, 2009;陈 广凤和田纪春,2015),目前已在各种生物的遗传研 究中被广泛使用(Xia et al., 2016)。但在小麦条锈 菌相关研究中,SNP分子标记的应用还处于起步阶 段,所开发的标记数量十分有限(李明菊等,2014; 2018)。竞争性等位基因特异性 PCR (kompetitive allele specific PCR, KASP)技术是由英国政府化学 家实验室开创的一种灵活、准确、高通量、低成本的 新一代SNP检测技术,已经成为国际上SNP分析的 主流方法之一。目前已被广泛应用于基因定位、遗 传图谱构建、群体遗传研究等多个研究领域,所涉及 的物种已达近百种(http:www.lgcgroup.com/cn),但 我国小麦条锈菌的相关研究中还没有如此高效、精 确的分子标记。

小麦条锈菌的群体基因频率往往会在短时间内 发生巨大波动,导致群体遗传结构和毒性结构的快 速改变(Hubbard et al.,2015;Zhan et al.,2015),因此 急需开发能够高效、准确地开展小麦条锈菌调查的 技术。KASP-SNP分子标记作为一种必要的研究技 术具有快速、高效、准确等特性,有望能解决这一生 产实践难题。本研究拟开发小麦条锈菌KASP-SNP 分子标记,用于小麦条锈菌群体遗传结构分析,并与 小麦条锈菌SSR分子标记进行对比,验证其实用效 果,以期为小麦条锈菌群体遗传研究和小麦条锈病 防控提供技术支撑。

1 材料与方法

1.1 材料

供试标样:2016年11月—2017年3月,本实验 室在湖北、甘肃、青海、四川、贵州、云南等省采集了 小麦条锈病标样,本研究挑选了其中有代表性的 64个标样供试。

试剂及仪器:KASP 2×Masrer Mix(KBS-1016-002),英国政府化学家实验室。MicroAmp[™] Optical 384孔 PCR反应板,赛默飞世尔科技(中国)有限公司;S1000 PCR仪、ND-1000分光光度计,美国 Bio-Rad 公司;FLUOstar Omega 多功能酶标仪,德国 BMG Labtech 公司;LGJ-12 真空冷冻干燥机,北京 松源华兴生物技术有限公司;TF-800 组织研磨机,上海净信实验科技研究部。

1.2 方法

1.2.1 条锈菌 SNP位点比对及 KASP-SNP 引物设计本研究以中国小麦条锈菌流行小种 CYR32的基因组序列(Zheng et al.,2013)作为参考基因组,利用 Mauve 2.1.1 软件与美国小麦条锈菌流行小种 PST78(Xia et al.,2018)和印度小麦条锈菌流行小种 38S102(Aggarwal et al.,2018)的基因组序列进行比对分析,寻找 SNP位点,用脚本提取 SNP位点上下游各 300 bp 的序列进行 KASP 设计,按照在基因组上均匀分布的原则,每隔 20万左右个碱基选择目标基因组上 SNP位点,用 Primer Premier 5.0 软件进行引物设计,完成设计后的引物在合成与使用前须在 2条正向引物 5′端分别加上不同的荧光接头,即F1:GAAGGTGACCAAGTTCATGCT(FAM接头)和F2:GAAGGTCGGAGTCAACGGATT(HEX 接头)。引物均由北京奥科鼎盛生物科技有限公司合成。

1.2.2 标样DNA提取及KASP-SNP引物分型检测

将64份小麦条锈菌标样表面用无菌水充分洗 净,剪取长2 cm、宽1 cm的病斑,置于2 mL离心管 中,用真空冷冻干燥机冻干处理12 h,备用。参照 Aljanabi & Martinez(1997)方法采用 CTAB 法提取 DNA,并进行部分改进。提取的 DNA 经检验合格 后,即 OD_{260 nm}:OD_{2680 nm}介于1.8~2.0之间,然后用双 蒸水稀释至 25 ng/µL,备用。加入 2 µL 溶解好的 DNA 样品到 384 孔 PCR 反应板底部并烘干,5 µL KASP 反应体系: 2×KASP Mastermix 2.5 µL、Primer Mix (12 µmol/L 正向引物 F1、12 µmol/L 正向引物 F2、30 µmol/L 反向引物)0.056 µL、ddH₂O 2.444 µL。 采用 Touchdown 方法进行 PCR 扩增,反应体系: 94℃预变性15 min;94℃变性20 s,65℃退火60 s,每 个循环退火温度降 0.8℃,10个循环;94℃变性20 s, 57℃退火 60 s,32个循环。反应结束后,将 PCR 产 物放入酶标仪中进行荧光数据读取,KASP 分型的 数据读取均应在 40℃以下进行。对荧光信号较低 的数据,适量增加 57℃循环数后再次读取,但总循 环数不能超过 48个。KASP 反应完成后,挑选分型 清晰、错配反应少的KASP 引物作为待验证引物。

1.2.3 KASP-SNP分子标记的多态性检验

由于目前尚未有用KASP-SNP标记分析小麦条 锈菌自然群体的相关报道,为检验其多态性,将 64个供试小麦条锈菌标样的DNA送往生工生物工 程(上海)有限公司进行SSR分子标记,引物采用本 实验室之前使用过的13对多态性较好的SSR引物 (Tian et al., 2016),其中,引物 scaffold176_11303、 scaffold495_45067、scaffold498_206436、scaffold5-10_69777、scaffold512_54559、scaffold571_34646、 scaffold938_65966 和 scaffold962_172974 由 Luo et al. (2015)开发;引物 SUNIPst05-47、SUNIPst15-30 和 SUNIPst16-42 由 Bailey et al. (2013)开发;引物 RJ4 由 Enjalbert et al. (2002)开发;引物 PstP03 由 Cheng et al.(2012)开发。

将64个小麦条锈菌标样的KASP-SNP分子标 记数据和SSR分子标记数据同时用Powermarker 3.25软件进行基因多样性(gene diversity,GD)指数、 多态性信息含量(polymorphic information content, PIC)指数与哈迪温伯格平衡(Hardy-Weinberg equilibrium,He)指数计算,对比2种分子标记的多态性。 1.2.4 基于2种分子标记的群体遗传结构分析对比

为明确技术原理和多态性不同的2种分子标记 在实际使用时分析结果的差异,将64个小麦条锈菌标 样按照地缘关系分为湖北、云南、贵州、四川、青海-甘 肃5个菌系,利用Structure 2.3软件分析SSR分子标记 及KASP-SNP分子标记的结果,设置运行参数K的取 值范围为2~20,10次重复,以似然值为基础,通过在线 工具Structure Harvester确定最佳聚类数K值,利用 Clusters软件进行重复抽样分析,利用Distruct软件 图形化显示结果并进行对比分析。

2 结果与分析

2.1 KASP-SNP引物的开发情况

基于对中国、美国和印度小麦条锈菌流行小种的基因组序列比对,共获得29929个SNP位点,开发

出462对KASP引物,进行引物分型检测后确定了多态性丰富、分型清晰的43对引物。这些引物所对应的SNP位点基本上均匀分布在小麦条锈菌基因组上,其中有24个位于非编码区,18个位于蛋白质编码区,1个位于信使RNA编码区(表1)。

Table 1 Sequences and related information of 43 pairs of KASP primers with polymorphism in Chinese wheat stripe rust population

引物 Primer	引物序列(5'-3') Primer sequence (5'-3')	CY32_Contig	CY32_PosIn	GD	He	PIC	注释信息 Note
KASP1	F1: GTGGCTCCTGGTGTAAGTTCC	1	75 964	0.314	0.156	0.281	内含子
	F2: GTGGCTCCTGGTGTAAGTTCT						Intron
	R: GTGGCCCAAACTACGCTAATTTA						
KASP21	F1: CTTTGTCGTCGTTGTTTCCCTCT	3	1 032 900	0.310	0.344	0.271	内含子
	F2: CTTTGTCGTCGTTGTTTCCCTCA						Intron
	R: CGGTGAATTATACCTCAGAATGC						
KASP24	F1: GACAGATGAGACTGATTGTCCAGATC	4	43 862	0.314	0.094	0.281	内含子
	F2: GACAGATGAGACTGATTGTCCAGATG						Intron
	R: GACTACATACTACCCACAGCGTTTG						
KASP52	F1: TCAAAAATACTACCAGGATCGCTT	7	904 967	0.571	0.000	0.490	内含子
	F2: TCAAAAATACTACCAGGATCGCTC						Intron
	R: CCACACAAGCACCGCATAAC						
KASP55	F1: AGGATCAACGCAATCTCGGAC	8	114 510	0.327	0.078	0.293	蛋白质编码区
	F2: AGGATCAACGCAATCTCGGAT						Protein-coding
	R: GCCTTACATCCCGCTTACCG						region
KASP76	F1: ATTGCCAGCAGCCATCACTTT	10	1 237 851	0.502	0.047	0.404	内含子
	F2: ATTGCCAGCAGCCATCACTTC						Intron
	R: GATTCAAACCTGTGAGCCTTCG						
KASP102	F1: TGTAGTTGTGATGTTGAATGGCA	14	983 593	0.325	0.078	0.288	内含子
	F2: TGTAGTTGTGATGTTGAATGGCG						Intron
	R: CATGTCCGCTGACAAGAACAA						
KASP125	F1: AGAGTAAAATTATTGAATGTGTATCGG	18	884 231	0.539	0.063	0.447	内含子
	F2: AGAGTAAAATTATTGAATGTGTATCGA						Intron
	R: CATCCTTTCAACTTCAACCCAA						
KASP152	F1: GTGCTTGTGGTTCAGACTTGCTA	23	294 119	0.461	0.094	0.368	内含子
	F2: GTGCTTGTGGTTCAGACTTGCTT						Intron
	R: GCTAGTTGCCTCCTCTTGTGC						
KASP153	F1: GCAAATGACCTCTGGGAAACTAT	23	581 118	0.499	0.531	0.402	内含子
	F2: GCAAATGACCTCTGGGAAACTAA						Intron
	R: CTTCCAAGCTCTAACTCACTTTTGA						
KASP157	F1: TGTACTAGTTGGCTTCTCAAGTTCTATT	24	223 357	0.517	0.125	0.433	蛋白质编码区
	F2: TGTACTAGTTGGCTTCTCAAGTTCTATC						Protein-coding
	R: ATCACAGAACCTCCAGAGTGAAAT						region
KASP159	F1: CTTTGAATTTGAGGTGATGGCA	24	654 444	0.359	0.063	0.294	内含子
	F2: CTTTGAATTTGAGGTGATGGCG						Intron
	R: CACGACTTCTGACTAGAACTGCTTG						
KASP162	F1: AACCAGCCCTGCTCATTGAAATA	25	232 930	0.174	0.094	0.167	内含子
	F2: AACCAGCCCTGCTCATTGAAATC						Intron
	R: CAGTGGATGTGATGCGTGAGGT						
KASP167	F1: AAGGTAGGTCGGATATATTTGTCATCT	26	419 659	0.419	0.453	0.362	内含子
	F2: AAGGTAGGTCGGATATATTTGTCATCC						Intron
	R: CCACTCATGGGCGAAGTTTT						
KASP180	F1: TTCCATCCTGCTTCTTTATATTGTTT	29	249 751	0.517	0.531	0.433	内含子
	F2: TTCCATCCTGCTTCTTTATATTGTTC						intron
	$\mathbf{R} \leftarrow \mathbf{C}\mathbf{C}\mathbf{A}\mathbf{C}\mathbf{C}\mathbf{T}\mathbf{T}\mathbf{G}\mathbf{G}\mathbf{C}\mathbf{A}\mathbf{A}\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{A}\mathbf{C}\mathbf{G}$						

续表1	Continued

引物 Primer	引物序列(5'-3') Primer sequence (5'-3')	CY32_Contig	CY32_PosIn	GD	Не	PIC	注释信息 Note
KASP186	F1. GCTGATACATCTGGCACACCG	30	530 088	0.330	0.375	0.285	蛋白质编码区
KASI 100	F2: GCTGATACATCTGGCACACCA	50	557 788	0.550	0.575	0.205	Protein-coding
	R. GTTCAAAGCTACCTCACCCTCCT						region
KASP189	F1. CCATTCTGTTATGACCACCAAGA	31	230 696	0.530	0.766	0.419	内含子
	F2: CCATTCTGTTATGACCACCAAGC						Intron
	R: TCCTCCACCACCTTCTGACTATC						
KASP190	F1: AAATTCTAGACTAACCAGACCGCTAAG	31	443 824	0.507	0.578	0.394	蛋白质编码区
	F2: AAATTCTAGACTAACCAGACCGCTAAA						Protein-coding
	R: CACCAAGGGACCCCAACAAT						region
KASP191	F1: GGAAATAATGCCCAAATATCTGATT	31	626 366	0.469	0.094	0.359	内含子
	F2: GGAAATAATGCCCAAATATCTGATC						Intron
	R: ACAAGGACTTTGCCTGTAGGTTTT						
KASP201	F1: CCACAACCTTTGGATACCTCAGT	33	703 232	0.439	0.063	0.355	蛋白质编码区
	F2: CCACAACCTTTGGATACCTCAGC						Protein-coding
	R: TGAGAGAATGGACCGTTAGGAGT						region
KASP203	F1: CATTGTGACTATCAAGAAAGGATTGT	34	279 801	0.509	0.734	0.408	内含子
	F2: CATTGTGACTATCAAGAAAGGATTGC						Intron
	R: GGAACCATCCGTCTAAACCC						
KASP205	F1: CATCATCACCATTTTGTACCGCT	34	642 373	0.227	0.000	0.215	蛋白质编码区
	F2: CATCATCACCATTTTGTACCGCC						Protein-coding
	R: GTGGTCACAATGCGGGTCAA						region
KASP227	F1: CAGACGGAAGATGAAGCTGGTTAT	39	669 916	0.542	0.031	0.457	内含子
	F2: CAGACGGAAGATGAAGCTGGTTAA						Intron
	R: TAGCCGCCAACATACCCAGA						
KASP252	F1: CATAAAAAGAAGAGAGATGGTGTTTGTT	46	60 712	0.529	0.109	0.418	内含于 Intern
	F2: CATAAAAAGAAGAGATGGTGTTTGTC						Intron
VACD25(R: GCAAGCAATTCCTACCTTTGTG	47	201 (24	0.1.(1	0.070	0 1 5 5	中令了
KASP256	F1: TAAAAGICGCCICIGIICICCAC	47	301 624	0.161	0.078	0.155	内召丁 Intron
							muon
K A SD257		17	570 160	0.400	0.004	0.207	蛋白质编码反
KASI 257		47	570 109	0.490	0.094	0.397	里口灰编码区 Protein-coding
							region
KASP258		48	10.810	0.260	0.047	0 239	蛋白质编码区
11101200	F2. TTCAGTTTCTTAGCAACAGCACG	10	10 010	0.200	0.017	0.257	Protein-coding
	R. GCCCCTTCCTTTTGTTATCTCT						region
KASP259	F1: GGATCGAAATCGGGTTTGGA	48	316 366	0.482	0.781	0.366	mRNA编码区
	F2: GGATCGAAATCGGGTTTGGC						mRNA-coding
	R: GATGCCAAGGGATTGTTCAGC						region
KASP261	F1: TGAGGAGTACTTTCGATAGAATCAGG	49	33 389	0.505	0.844	0.393	蛋白质编码区
	F2: TGAGGAGTACTTTCGATAGAATCAGA						Protein-coding
	R: GCCAGCATTCTCCCTCTTACAC						region
KASP263	F1: GTATCATACCTCTTCCCAACCG	49	432 380	0.482	0.063	0.366	内含子
	F2: GTATCATACCTCTTCCCAACCA						Intron
	R: TTTTCCTGAGTCAACATCCCAT						
KASP270	F1: ATGTAGCTTACCCCAAGAACGTC	51	446 689	0.367	0.484	0.300	内含子
	F2: ATGTAGCTTACCCCAAGAACGTG						Intron
	R: CCCATTCCAACGACCTGATT						
KASP275	F1: GCGGTTTTGAGGATAGGCTCT	53	107 020	0.342	0.438	0.283	蛋白质编码区
	F2: GCGGTTTTGAGGATAGGCTCG						Protein-coding
Tr L ODDO L	R: TTGGTCGTATCTACATCGGGTTC						region 亚山氏/白云日
KASP334	F1: AATCTGAAATTCTCGATCTTGGG	74	100 654	0.476	0.578	0.389	蛋日质编码区
	F2: AATCTGAAATTCTCGATCTTGGT						region
	R: AATGCTTATTGGAACACGGACA						10gioli

续表1 Conti	nued						
引物 Primer	引物序列(5'-3') Primer sequence (5'-3')	CY32_Contig	CY32_PosIn	GD	Не	PIC	注释信息 Note
KASP338	F1: TAGGAACGATCAAATCATCTGCA	76	66 034	0.411	0.047	0.327	蛋白质编码区
	F2: TAGGAACGATCAAATCATCTGCG						Protein-coding
	R: TAAGCCAAAGATCAAGCGACTAA						region
KASP351	F1: TTGATCTGTTGGTCTACCGTATGA	81	248 702	0.348	0.406	0.297	蛋白质编码区
	F2: TTGATCTGTTGGTCTACCGTATGG						Protein-coding
	R: CGACTGTACCCAAGGGAGAAG						region
KASP353	F1: GAGAAAAACTGAGCAATCCAAAAT	82	293 899	0.455	0.000	0.386	蛋白质编码区
	F2: GAGAAAAACTGAGCAATCCAAAAC						Protein-coding
	R: CCAACAACCAGAACCACTCCT						region
KASP357	F1: CGAGCGTGACAGCAAACATC	84	258 195	0.305	0.375	0.258	蛋白质编码区
	F2: CGAGCGTGACAGCAAACATT						Protein-coding
	R: CATATACCTCTGACCCAAAATCTGTAC						region
KASP359	F1: TCGAAGCATTCATTGATACCCTT	85	303 690	0.290	0.250	0.256	蛋白质编码区
	F2: TCGAAGCATTCATTGATACCCTC						Protein-coding
	R: TCCTTCTTCAACAACATCAGCAA						region
KASP370	F1: GGTCCTCTAGGTGGATCACAGTTT	91	225 564	0.549	0.000	0.470	内含子
	F2: GGTCCTCTAGGTGGATCACAGTTC						Intron
	R: GCGAAGCTAGAGTAGTCAATTCAGTTA						
KASP373	F1: CTGTTTGTCAATCGGACCAGC	93	6 570	0.500	0.000	0.375	蛋白质编码区
	F2: CTGTTTGTCAATCGGACCAGT						Protein-coding
	R: TGAATAATTCGGTGAAGAGTTTAGTG						region
KASP378	F1: GCAAGTTCCAACGCATCGGT	95	225 219	0.411	0.375	0.356	内含子
	F2: GCAAGTTCCAACGCATCGGC						Intron
	R: CTCAGATTGTTTGGTTTATTAGGCTCC						
KASP390	F1: CAAGAGAGATTTCAATGAGCCCAG	105	137 290	0.492	0.094	0.371	内含子
	F2: CAAGAGAGATTTCAATGAGCCCAC						Intron
	R: GCAATAACCCGTGAGCGAAAC						
KASP392	F1: ATTCCACCCACATCAAGACCA	108	154 635	0.488	0.063	0.369	蛋白质编码区
	F2: ATTCCACCCACATCAAGACCG						Protein-coding
	R: TACCCTCAGTCAAGTTCATCTATCTACC						region
均值 Average	ge			0.420	0.245	0.346	

这些引物在合成与使用前须加上 FAM 与 HEX 荧光接头。CY32_Contig: CYR32 基因组序列片段号; CY32_PosIn: CYR32 基因组序列碱基位置; GD: 基因多样性指数; PIC: 多态性信息含量指数; He: 哈迪温伯格平衡指数。These primers must be coupled with FAM and HEX fluorescent connectors before they are synthesized and used. CY32_Contig: CYR32 genome sequence fragment number; CY32_PosIn: location of CYR32 genome sequence; GD: gene diversity index; PIC: polymorphic information content index; He: Hardy-Weinberg equilibrium index.

2.2 2种分子标记的多态性对比结果

基因多样性指数与多态性信息含量指数都能反映出引物的多态性丰富程度。经Powermarker 3.25软件计算,KASP-SNP引物的基因多样性指数、多态性信息含量指数和哈迪温伯格平衡指数平均分别为0.420、0.346和0.245(表1),而13对SSR引物的基因多样性指数、多态性信息含量指数和哈迪温伯格平衡指数平均分别为0.265、0.237和0.313(表2)。由于这64个小麦条锈菌标样的采样地比较分散,哈迪温伯格平衡指数的参考意义并不大。而KASP-SNP引物的基因多样性指数和多态性信息含量指数较SSR引物分别高出了58.5%和46.0%。

2.3 基于2种分子标记的群体遗传结构分析对比

Structure 2.3 软件分析结果显示,2种分子标记 所得结果从总体上看大致相同,如最佳聚类数K值 都为4,代表供试菌系最可能有4种不同的遗传背 景;其中,云南菌系是遗传结构相对最简单的菌系, 湖北菌系是遗传结构相对最复杂的菌系。从单株小 麦条锈菌来看,2种分子标记所得结果差异较大,特 别是对于有多个遗传背景的小麦条锈菌,各遗传背 影所占比例不同,差异最大的几株小麦条锈菌其遗 传背景划分也不同,如SSR分子标记结果中,青海-甘肃群体出现了红绿色遗传背景的菌株,而相应的 KASP-SNP分子标记结果则显示为紫红色(图1)。

_				
	引物	基因多样性指数	多态性信息含量指数	哈迪温伯格平衡指数
Primer		Gene diversity index	Polymorphic information content index	Hardy-Weinberg equilibrium index
	scaffold495_45067	0.644	0.568	0.906
	scaffold510_69777	0.246	0.222	0.188
	SUNIPst15-30	0.633	0.557	0.922
	SUNIPst05-47	0.090	0.087	0.094
	RJ4	0.075	0.072	0.078
	scaffold176-11303	0.103	0.098	0.109
	scaffold571_34646	0.016	0.015	0.016
	SUNIPst16-42	0.661	0.588	1.000
	PstP03	0.182	0.166	0.172
	scaffold498_206436	0.016	0.015	0.016
	scaffold512_54559	0.434	0.373	0.266
	scaffold962_172974	0.131	0.122	0.078
	scaffold938-65966	0.214	0.202	0.219
	均值 Average	0.265	0.237	0.313

Fig. 1 Analysis of genetic structure of 64 wheat stripe rust populations based on SSR and SNP markers

图中用不同的颜色表示不同的遗传背景,每株小麦条锈菌在图中由一个竖条表示,竖条的颜色组成可以反映该菌的遗传 "血统"。Different colors in the figure are used to represent different genetic backgrounds. Each wheat stripe rust fungus is represented as a vertical bar. The color composition of the vertical bar reflects the genetic "lineage" of the fungus.

3 讨论

小麦条锈菌的群体遗传结构解析、毒性变异、起 源进化、传播轨迹及其与小麦的协同进化关系等都 是小麦条锈菌研究中的热点(Ali et al., 2014; Rodriguez-Algaba et al., 2014)。SNP是研究这些科学问 题的重要分子标记,但是目前还未得到推广普及(李 明菊等,2018)。本研究成功开发出由43对多态性 引物组成的用于中国小麦条锈菌群体遗传结构研究 的KASP-SNP分子标记,并与13对多态性引物组成 的SSR分子标记做了对比评价。相较而言,KASP-SNP分子标记引物在数量上远远超出了近年来小麦 条锈菌群体遗传结构研究中普遍采用的SSR分子 标记(Zhan et al., 2016; Hu et al., 2017; 姚强等, 2018)。 在多态性方面,由于所标记的小麦条锈菌群体不同,

无法与其它研究结果进行直接比对,但本研究开发 筛选到的KASP-SNP分子标记每对引物的平均多态 性信息含量都高于SSR分子标记引物;而且,与李 明菊等(2014;2018)开发的SNP分子标记相比,本 研究开发的分子标记是基于KASP技术开发的,与 常规的凝胶电泳检测技术相比具有快速、高通量、特 异性强、灵敏度高等优点,在技术层面上要远优于前 者;与Xia et al.(2016)开发的SNP分子标记引物相 比,其仅从分泌蛋白编码区开发引物,以关联分析性 状、定位无毒基因为目的,而本研究基于小麦条锈菌 全基因组序列进行数据挖掘,选取的SNP位点尽可 能均匀分布,以满足小麦条锈菌群体遗传研究需要, 进一步挖掘完善后有望解决小麦条锈菌流行预测和 生理小种监控不及时、不准确的难题。

在本研究中,用2种分子标记进行小麦条锈菌

群体遗传结构分析所得结果在整体上虽然相似,但 在个别小麦条锈菌的遗传分析上存在着显著差异, 考虑到 KASP-SNP 分子标记的多态性信息含量更 高,结果应更准确。这也说明现有的 SSR 分子标记 在分析精度上还存在不足。本研究已开发的43 对多 态性 KASP-SNP 分子标记引物,可用来更高效、准确 地分析小麦条锈菌群体遗传结构,但由于该技术潜 力巨大,这只能算是初步挖掘,出于继续提升研究精 度的考虑,今后有必要继续开发更多的 SNP 分子标 记,完善这套技术体系,进而为开展更大规模、更高 精度的小麦条锈菌群体遗传研究工作提供技术支撑。

此外,KASP技术目前在许多生物的高精度遗 传图谱构建、生物学性状的分子检测等领域已得到 广泛应用,如在小麦上已经成功开发出了许多经济 性状基因的快速检测KASP-SNP标记(Rasheed et al.,2016;Qureshi et al.,2018),构建了抗锈基因的遗 传图谱(Mu et al.,2018)。目前,高通量测序技术已 在小麦条锈菌研究中被广泛应用,产生了大量的 SNP数据(Cantu et al.,2011;Zheng et al.,2013;Hubbard et al.,2015),这为扩充KASP-SNP分子标记和 完善其技术流程提供了极大的便利。充分挖掘 KASP-SNP分子标记在小麦条锈菌高精度遗传图谱 构建、无毒基因定位和毒性、抗药性、抗逆性、寄生适 合度等性状的快速检测方面的应用潜力,将为小麦 条锈病的综合防控提供有力支持,为小麦的安全生 产提供坚实保障。

参考文献(References)

- AGGARWAL R, KULSHRESHTHA D, SHARMA S, SINGH VK, MANJUNATHA C, BHARDWAJ SC, SAHARAN MS. 2018. Molecular characterization of Indian pathotypes of *Puccinia striiformis* f. sp. *tritici* and multigene phylogenetic analysis to establish inter- and intraspecific relationships. Genetics and Molecular Biology, 41(4): 834–842
- ALI S, GLADIEUX P, LECONTE M, GAUTIER A, JUSTESEN AF, HOVMØLLER MS, ENJALBERT J, DE VALLAVIEILLE-POPE C. 2014. Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen *Puccinia striiformis* f. sp. *tritici*. PLoS Pathogens, 10(1): e1003903
- ALJANABI SM, MARTINEZ I. 1997. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research, 25(22): 4692–4693
- BAILEY J, KARAOGLU H, WELLINGS CR, PARK R. 2013. Isolation and characterization of 25 genome-derived simple sequence repeat markers for *Puccinia striiformis* f. sp. *tritici*. Molecular Ecology Resources, 13(4): 760–762

BRITO PH, EDWARDS SV. 2009. Multilocus phylogeography and

phylogenetics using sequence-based marker. Genetics, 135(3): 439-455

BROOKES AJ. 1999. The essence of SNPs. Gene, 234(2): 177-186

- CANTU D, GOVINDARAJULU M, KOZIK A, WANG MN, CHEN XM, KOJIMA KK, JURKA J, MICHELMORE RW, DUB-COVSKY J. 2011. Next generation sequencing provides rapid access to the genome of *Puccinia striiformis* f. sp. *tritici*, the causal agent of wheat stripe rust. PLoS ONE, 6(8): e24230
- CHEN GF, TIAN JC. 2015. Genetic analysis of natural population of wheat and construction of composite map using SNP markers. Molecular Plant Breeding, 13(7): 1441–1449 (in Chinese) [陈广 凤, 田纪春. 2015. 基于 SNP 标记小麦自然群体遗传多样性及 复合图谱的构建. 分子植物育种, 13(7): 1441–1449]
- CHEN WQ, KANG ZS, MA ZH, XU SC, JIN SL, JIANG YY. 2013. Integrated management of wheat stripe rust caused by *Puccinia striiformis* f. sp. *tritici* in China. Scientia Agricultura Sinica, 46 (20): 4254–4262 (in Chinese) [陈万权, 康振生, 马占鸿, 徐世 昌, 金社林, 姜玉英. 2013. 中国小麦条锈病综合治理理论与实 践. 中国农业科学, 46(20): 4254–4262]
- CHEN XM, LINE RF, LEUNG H. 1993. Relationship between virulence variation and DNA polymorphism in *Puccinia striiformis*. Phytopathology, 83(12): 1489–1497
- CHENG P, CHEN XM, XU LS, SEE DR. 2012. Development and characterization of expressed sequence tag-derived microsatellite markers for the wheat stripe rust fungus *Puccinia striiformis* f. sp. *tritici*. Molecular Ecology Resources, 12(4): 779–781
- ENJALBERT J, DUAN X, GIRAUD T, VAUTRIN D, DE VALLAVIE-ILLE-POPE C, SOLIGNAC M. 2002. Isolation of twelve microsatellite loci, using an enrichment protocol, in the phytopathogenic fungus *Puccinia striiformis* f. sp. *tritici*. Molecular Ecology Notes, 2(4): 563–565
- HU XP, MA LJ, LIU TG, WANG CH, PENG YL, PU Q, XU XM. 2017. Population genetic analysis of *Puccinia striiformis* f. sp. *tritici* suggests two distinct populations in Tibet and the other regions of China. Plant Disease, 101(2): 288–296
- HUBBARD A, LEWIS CM, YOSHIDA K, RAMIREZ-GONZALEZ RH, DE VALLAVIEILLE-POPE C, THOMAS J, KAMOUN S, BAYLES R, UAUY C, SAUNDERS DG. 2015. Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome Biology, 16: 23
- JIANG SC, YAO Q, ZHAO J, HUANG LL, KANG ZS, ZHAN GM. 2018. Genetic analysis of *Puccinia striiformis* f. sp. *tritici* in Yunnan Province based on virulence phenotypes and simple sequence repeats. Journal of Plant Protection, 45(1): 83–89 (in Chinese) [姜舒畅, 姚强, 赵杰, 黄丽丽, 康振生, 詹刚明. 2018. 基 于毒性表型与微卫星标记的云南省条锈病菌群体遗传分析. 植物保护学报, 45(1): 83–89]
- JUSTESEN AF, RIDOUT CJ, HOVMOLLER MS. 2002. The recent history of *Puccinia striiformis* f. sp. *tritici* in Denmark as revealed by disease incidence and AFLP markers. Plant Pathology, 51(1): 13–23
- KANG ZS, WANG XJ, ZHAO J, TANG CL, HUANG LL. 2015. Advances in research of pathogenicity and virulence variation of

the wheat stripe rust fungus *Puccinia striiformis* f. sp. *tritici*. Scientia Agricultura Sinica, 48(17): 3439-3453 (in Chinese) [康振 生, 王晓杰, 赵杰, 汤春蕾, 黄丽丽. 2015. 小麦条锈菌致病性及 其变异研究进展. 中国农业科学, 48(17): 3439-3453]

- LI MJ, CHEN WQ, DUAN XY, LIU TG, GAO L, LIU B. 2014. First report of SNP primers of three house-keeping genes of *Puccinia striiformis* f. sp. *tritici*. Acta Phytopathologica Sinica, 44(5): 536-541 (in Chinese) [李明菊, 陈万权, 段霞瑜, 刘太国, 高利, 刘博. 2014. 小麦条锈菌 3 个看家基因 SNP 引物的首次报道. 植物病理学报, 44(5): 536-541]
- LI MJ, ALAM MA, LI HX, CHENG JS, DING ML. 2018. Development and polymorphic loci research of SNP primers from housekeeping genes of *Puccinia striiformis* f. sp. *tritici*. Molecular Plant Breeding, 16(5): 1539–1544 (in Chinese) [李明菊, Alam MA, 李昊星, 程加省, 丁明亮. 2018. 小麦条锈菌看家基因 SNP 引物的开发及多态性位点研究. 分子植物育种, 16(5): 1539– 1544]
- LI ZQ, SHANG HS. 1989. Wheat rust and its control. Shanghai: Shanghai Science and Technology Publishing (in Chinese) [李振 岐, 商鸿生. 1989. 小麦锈病及其防治. 上海: 上海科学技术出 版社]
- LI ZQ, ZENG SM. 2002. Wheat rusts in China. Beijing: China Agriculture Press (in Chinese) [李振岐, 曾士迈. 2002. 中国小麦锈病. 北京: 中国农业出版社]
- LUO HY, WANG XJ, ZHAN GM, WEI GR, ZHOU XL, ZHAO J, HUANG LL, KANG ZS. 2015. Genome-wide analysis of simple sequence repeats and efficient development of polymorphic SSR markers based on whole genome re-sequencing of multiple isolates of the wheat stripe rust fungus. PLoS ONE, 10(6): e0130362
- MA ZH. 2018. Researches and control of wheat stripe rust in China. Journal of Plant Protection, 45(1): 1-6 (in Chinese) [马占鸿. 2018. 中国小麦条锈病研究与防控. 植物保护学报, 45(1): 1-6]
- MU JM, HUANG S, LIU SJ, ZENG QD, DAI MF, WANG QL, WU JH, YU SZ, KANG ZS, HAN DJ. 2018. Genetic architecture of wheat stripe rust resistance revealed by combining QTL mapping using SNP-based genetic maps and bulked segregant analysis. Theoretical and Applied Genetics, 132(2): 443–455
- QURESHI N, KANDIAH P, GESSESE MK, NSABIYERA V, WELLS
 V, BABU P, WONG D, HAYDEN M, BARIANA H, BANSAL
 U. 2018. Development of co-dominant KASP markers co-segregating with Ug99 effective stem rust resistance gene *Sr26* in wheat. Molecular Breeding, 38: 97
- RASHEED A, WEN WE, GAO FM, ZHAI SN, JIN H, LIU JD, GUO Q, ZHANG YJ, DREISIGACKER S, XIA XC, et al. 2016. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theoretical and Applied Genetics, 129(10): 1843–1860
- RODRIGUEZ-ALGABA J, WALTER S, SØRENSEN CK, HØVM-OLLER MS, JUSTESEN AF. 2014. Sexual structures and recombination of the wheat rust fungus *Puccinia striiformis* on *Berberis vulgaris*. Fungal Genetics and Biology, 70: 77–85

- SHAN WX, CHEN SY, KANG ZS, WU LR, LI ZQ. 1998. Genetic diversity in *Puccinia striiformis* Westend. f. sp. *tritici* revealed by pathogen genome specific repetitive sequence. Canadian Journal of Botany, 76(4): 587–595
- TIAN Y, ZHAN GM, CHEN XM, TUNGRUENTRAGOON A, LU X, ZHAO J, HUANG LL, KANG ZS. 2016. Virulence and simple sequences repeat marker segregation in a *Puccinia striiformis* f. sp. *tritici* population produced by selfing a Chinese isolate on *Berberis shensiana*. Phytopathology, 106(2): 185–191
- WU P, LIU J, TIAN JC. 2019. Research progress of single nucleotide polymorphism (SNP) molecular markers in wheat genetic breeding. Journal of Agriculture, 9(1): 54–58 (in Chinese) [吴澎, 刘 娟, 田纪春. 2019. 单核苷酸多态性(SNP)分子标记在小麦遗传 育种中的研究进展. 农学学报, 9(1): 54–58]
- XIA CQ, WANG MN, WAN AM, JIWAN DA, SEE DR, CHEN XM. 2016. Association analysis of SP-SNPs and avirulence genes in *Puccinia striiformis* f. sp. *tritici*, the wheat stripe rust pathogen. American Journal of Plant Sciences, 7(1): 126–137
- XIA CJ, WANG MN, YIN CT, CORNEJO OE, HULBERT SH, CHEN XM. 2018. Genomic insights into host adaptation between the wheat stripe rust pathogen (*Puccinia striiformis* f. sp. *tritici*) and the barley stripe rust pathogen (*Puccinia striiformis* f. sp. *hordei*). BMC Genomics, 19(1): 664
- YAO Q, WANG JR, MENG Y, ZHAN GM, HUANG LL, KANG ZS.
 2018. Virulence and genotypic diversity of wheat stripe rust races CYR32 and CYR33 in China. Journal of Plant Protection, 45 (1): 46-52 (in Chinese) [姚强, 王洁荣, 孟岩, 詹刚明, 黄丽丽, 康振生. 2018. 中国小麦条锈病菌 CYR32和 CYR33的毒性及 基因型多样性. 植物保护学报, 45(1): 46-52]
- ZHAN GM, WANG FP, CHEN XM, WAN CP, HAN QM, HUANG LL, KANG ZS, CHEN XM. 2016. Virulence and molecular diversity of the *Puccinia striiformis* f. sp. *tritici* population in Xinjiang in relation to other regions of western China. Plant Disease, 100(1): 99–107
- ZHAN GM, WANG FP, LUO HY, JIANG SC, ZHENG WM, HUANG LL, KANG ZS. 2015. Screening for simple sequence repeat markers in *Puccinia striiformistritici* based on genomic sequence. Journal of Zhejiang University: Science B, 16(8): 727–732
- ZHAO J, ZHENG D, ZUO SX, WANG L, HUANG LL, KANG ZS. 2018. Research advances in alternate host and sexual reproduction of wheat yellow rust pathogen *Puccinia striiformis* f. sp. tritici Erikss. et Henn. Journal of Plant Protection, 45(1): 7–19 (in Chinese) [赵杰, 郑丹, 左淑霞, 王龙, 黄丽丽, 康振生. 2018. 小 麦条锈菌有性生殖与毒性变异的研究进展. 植物保护学报, 45 (1): 7–19]
- ZHENG WM, HUANG LL, HUANG JQ, WANG XJ, CHEN XM, ZHAO J, GUO J, ZHUANG H, QIU CZ, LIU J, et al. 2013. High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus. Nature Communication, 5: 2673

(责任编辑:李美娟)