• 首页 | 期刊简介  | 
    编委会
    编委会
    青年编委会
     | 道德声明 | 投稿指南 | 联系我们 | 期刊订阅 | English
江苏省水稻赤霉病病原菌分离鉴定与致病力分析
点此下载全文
引用本文:陈祥祥,吴季荣,武德亮,徐剑宏,史建荣,董飞.江苏省水稻赤霉病病原菌分离鉴定与致病力分析.植物保护学报,2022,49(6):1612-1619
DOI:10.13802/j.cnki.zwbhxb.2022.2021068
摘要点击次数:
全文下载次数:
作者单位E-mail
陈祥祥 江苏大学食品与生物工程学院, 镇江 212013  
吴季荣 江苏省农业科学院农产品质量安全与营养研究所, 农业农村部农产品质量安全控制技术与标准重点实验室, 农业农村部农产品质量安全风险评估实验室, 江苏省现代粮食流通与安全协同创新中心, 南京 210014  
武德亮 江苏省农业科学院农产品质量安全与营养研究所, 农业农村部农产品质量安全控制技术与标准重点实验室, 农业农村部农产品质量安全风险评估实验室, 江苏省现代粮食流通与安全协同创新中心, 南京 210014  
徐剑宏 江苏大学食品与生物工程学院, 镇江 212013
江苏省农业科学院农产品质量安全与营养研究所, 农业农村部农产品质量安全控制技术与标准重点实验室, 农业农村部农产品质量安全风险评估实验室, 江苏省现代粮食流通与安全协同创新中心, 南京 210014 
 
史建荣 江苏大学食品与生物工程学院, 镇江 212013
江苏省农业科学院农产品质量安全与营养研究所, 农业农村部农产品质量安全控制技术与标准重点实验室, 农业农村部农产品质量安全风险评估实验室, 江苏省现代粮食流通与安全协同创新中心, 南京 210014 
jianrong63@126.com 
董飞 江苏省农业科学院农产品质量安全与营养研究所, 农业农村部农产品质量安全控制技术与标准重点实验室, 农业农村部农产品质量安全风险评估实验室, 江苏省现代粮食流通与安全协同创新中心, 南京 210014 feidong1985@126.com 
中文摘要:为明确江苏省水稻赤霉病的病原菌组成及致病特征,于2018—2019年从江苏省13个市41个县区采集341份水稻样品,采用组织分离法对病原菌进行分离纯化,基于翻译延伸因子(translationelongation factor-1α,TEF-1α)序列分析对分离菌株进行鉴定,通过TRI11基因序列鉴定及产毒力测定对其产毒化学型进行分析,并按照柯赫氏法则对其致病力进行验证。结果显示,从水稻样品中共分离获得病原菌392株,其中亚洲镰刀菌Fusarium asiaticum为385株,禾谷镰刀菌F. graminearum为7株。亚洲镰刀菌分为3-乙酰化脱氧雪腐镰刀菌烯醇(3-acetyldeoxynivalenol,3ADON)化学型和雪腐镰刀菌烯醇(nivalenol,NIV)化学型菌株,分别占亚洲镰刀菌总菌株数的 66.8% 和 33.2%;禾谷镰刀菌均为(15-acetyldeoxynivalenol,15ADON)化学型。产3ADON的亚洲镰刀菌在全省范围内为优势群体,而产15ADON的禾谷镰刀菌仅在淮北地区被发现;产NIV的亚洲镰刀菌对水稻的致病性要显著高于产3ADON的亚洲镰刀菌。不同产毒化学型亚洲镰刀菌对水稻均有一定致病性,但NIV化学型亚洲镰刀菌对水稻的致病力最强。
中文关键词:水稻  赤霉病  禾谷镰刀菌  亚洲镰刀菌  产毒化学型  致病性
 
Identification and pathogenicity test of Fusarium isolates causing Fusarium head blight in rice in Jiangsu Province
Author NameAffiliationE-mail
Chen Xiangxiang School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China  
Wu Jirong Collaborative Innovation Center for Modern Grain Circulation and Safety
Key Laboratory for Agro-ProductSafety Risk Evaluation, Ministry of Agriculture and Rural Affairs
Key Laboratory for Control Technologyand Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs
Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu Province, China 
 
Wu Deliang Collaborative Innovation Center for Modern Grain Circulation and Safety
Key Laboratory for Agro-ProductSafety Risk Evaluation, Ministry of Agriculture and Rural Affairs
Key Laboratory for Control Technologyand Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs
Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu Province, China 
 
Xu Jianhong School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
Collaborative Innovation Center for Modern Grain Circulation and Safety
Key Laboratory for Agro-ProductSafety Risk Evaluation, Ministry of Agriculture and Rural Affairs
Key Laboratory for Control Technologyand Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs
Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu Province, China 
 
Shi Jianrong School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
Collaborative Innovation Center for Modern Grain Circulation and Safety
Key Laboratory for Agro-ProductSafety Risk Evaluation, Ministry of Agriculture and Rural Affairs
Key Laboratory for Control Technologyand Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs
Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu Province, China 
jianrong63@126.com 
Dong Fei Collaborative Innovation Center for Modern Grain Circulation and Safety
Key Laboratory for Agro-ProductSafety Risk Evaluation, Ministry of Agriculture and Rural Affairs
Key Laboratory for Control Technologyand Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs
Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu Province, China 
feidong1985@126.com 
Abstract:To clarify the composition and pathogenicity of Fusarium species isolated from Fusarium head blight of rice, 341 rice samples were collected from 41 counties of 13 cities in 2018 and 2019 in Jiangsu Province. Fusarium isolates were identified with molecular method based on the translation elongation factor 1α (TEF-1α) gene sequence. According to TRI11 gene sequences and in-vitro toxin production, the chemotype of F. graminearum species complex was determined. Then, to complete Koch’s postulate, the F. asiaticum isolates in different chemotypes were tested for pathogenicity. The results showed that a total of 392 isolates were obtained from rice samples, including F. asiaticum (n=385) and F. graminearum (n=7). Of them, 66.8% of F. asiaticum isolates were the 3-acetyldeoxynivalenol (3ADON) chemotype and the remainders were the nivalenol (NIV) chemotype. In addition, all the F. graminearum isolates were the 15-acetyldeoxynivalenol (15ADON) chemotype. Moreover, F. asiaticum with 3ADON chemotype was dominant in Jiangsu Province, while 15ADON chemotype of F. graminearum strains could only be found in the northern Jiangsu. The results of pathogenicity test showed that F. asiaticum isolates in the NIV chemotype were more virulent to rice than F. asiaticum isolates in 3ADON chemotype. Generally, F. asiaticum isolates in NIV chemotype had the strongest pathogenicity against rice, but variation existed within chemotypes of F. asiaticum.
keywords:rice  Fusarium head blight  Fusarium graminearum  Fusarium asiaticum  chemotype  pathogenicity
查看全文  查看/发表评论  下载PDF阅读器
您是本站第  8717223 版权所有:植物保护学报    京ICP备05006550号-2  
主管单位:中国科协 主办单位:中国植物保护学会、中国农业大学 地址:北京市圆明园西路2号 中国农业大学植物保护学院 植物保护学报编辑部
电话:010-62732528 电子邮件:zbxb@cau.edu.cn
技术支持:北京勤云科技发展有限公司