• 首页 | 期刊简介  | 
    编委会
    编委会
    青年编委会
     | 道德声明 | 投稿指南 | 联系我们 | 期刊订阅 | English
春小麦品种墨波成株期抗条锈基因遗传解析
点此下载全文
引用本文:张调喜,闫佳会,侯璐,姚强,郭青云,马麟.春小麦品种墨波成株期抗条锈基因遗传解析.植物保护学报,2018,45(1):60-66
DOI:10.13802/j.cnki.zwbhxb.2018.2018906
摘要点击次数:
全文下载次数:
作者单位E-mail
张调喜 青海大学农林科学院, 青海大学省部共建三江源生态与高原农牧业国家重点实验室
青海省农林科学院, 农业部西宁作物有害生物科学观测实验站, 青海省农业有害生物综合治理重点实验室, 西宁 810016 
 
闫佳会 青海大学农林科学院, 青海大学省部共建三江源生态与高原农牧业国家重点实验室
青海省农林科学院, 农业部西宁作物有害生物科学观测实验站, 青海省农业有害生物综合治理重点实验室, 西宁 810016 
 
侯璐 青海大学农林科学院, 青海大学省部共建三江源生态与高原农牧业国家重点实验室
青海省农林科学院, 农业部西宁作物有害生物科学观测实验站, 青海省农业有害生物综合治理重点实验室, 西宁 810016 
mantou428@163.com 
姚强 青海大学农林科学院, 青海大学省部共建三江源生态与高原农牧业国家重点实验室
青海省农林科学院, 农业部西宁作物有害生物科学观测实验站, 青海省农业有害生物综合治理重点实验室, 西宁 810016 
 
郭青云 青海大学农林科学院, 青海大学省部共建三江源生态与高原农牧业国家重点实验室
青海省农林科学院, 农业部西宁作物有害生物科学观测实验站, 青海省农业有害生物综合治理重点实验室, 西宁 810016 
guoqingyunqh@163.com 
马麟 大通县农业技术推广中心, 青海 西宁 810100  
中文摘要:为明确春小麦品种墨波成株期抗条锈性遗传基础,以墨波与感病品种Taichung29(T29)杂交创建F2∶3分离群体,通过青海西宁市和海东市2个试验点2年田间病圃鉴定,应用植物数量性状主基因+多基因混合遗传模型单个分离世代分析方法对墨波/T29 F2群体的抗性遗传效应进行了分析。结果发现群体单株/家系的病害严重度和反应型在2个试验点均未呈现连续性分布,但是在不同区段内,群体株系间又表现出较明显的连续性变异,初步推测,墨波成株期对小麦条锈病抗性具有由主效基因和微效基因共同控制的特征;遗传分析结果表明,墨波的成株期抗条锈性最优遗传模型均为2对主基因遗传,并受微效基因影响,在海东市试验点用反应型数据分析得到的最优遗传模型为C-6模型2MG-EEAD,即2对等显性主基因遗传,在海东市及西宁市试验点用严重度数据分析得到的最优遗传模型均为C-1模型2MG-ADI,即2对主基因加性-显性-上位性遗传。
中文关键词:春小麦  墨波  抗条锈性  遗传模型
 
Genetic analysis of spring wheat Mobo stripe rust resistance at adult stage
Author NameAffiliationE-mail
Zhang Tiaoxi Key Laboratory of Agricultural Integrated Pest Management, Academy of Agriculture and Forestry Sciences, Qinghai University
State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Agriculture and Forestry Sciences
Scientific Observing and Experimental Station of Crop Pest in Xining, Ministry of Agriculture, Xining 810016, Qinghai Province, China 
 
Yan Jiahui Key Laboratory of Agricultural Integrated Pest Management, Academy of Agriculture and Forestry Sciences, Qinghai University
State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Agriculture and Forestry Sciences
Scientific Observing and Experimental Station of Crop Pest in Xining, Ministry of Agriculture, Xining 810016, Qinghai Province, China 
 
Hou Lu Key Laboratory of Agricultural Integrated Pest Management, Academy of Agriculture and Forestry Sciences, Qinghai University
State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Agriculture and Forestry Sciences
Scientific Observing and Experimental Station of Crop Pest in Xining, Ministry of Agriculture, Xining 810016, Qinghai Province, China 
mantou428@163.com 
Yao Qiang Key Laboratory of Agricultural Integrated Pest Management, Academy of Agriculture and Forestry Sciences, Qinghai University
State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Agriculture and Forestry Sciences
Scientific Observing and Experimental Station of Crop Pest in Xining, Ministry of Agriculture, Xining 810016, Qinghai Province, China 
 
Guo Qingyun Key Laboratory of Agricultural Integrated Pest Management, Academy of Agriculture and Forestry Sciences, Qinghai University
State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Agriculture and Forestry Sciences
Scientific Observing and Experimental Station of Crop Pest in Xining, Ministry of Agriculture, Xining 810016, Qinghai Province, China 
guoqingyunqh@163.com 
Ma Lin Datong Agricultural Technology Promotion Center, Xining 810100, Qinghai Province, China  
Abstract:In order to clarify the resistance hereditary rule of spring wheat Mobo(Potam-S70) to stripe rust, Mobo was crossed with the susceptible cultivars Taichung 29(T29) to produce F2:3 segregating populations. Stripe rust resistance of F2:3 segregating populations was tested separately on Xining and Haidong fields in two years. The method of joint segregation analysis of single generation of major gene plus polygene mixed inheritance model was used to analyze the inheritance of resistance stripe rust in Mobo. The results showed for F2 and F3 line populations, both the disease severity and infection type data which were uncontinuous distributions with some part showed continuous, preliminary indicated that stripe rust resistance of Mobo was complicated controlled by major gene and minor genes together. Genetic analysis showed that, stripe rust resistance of Mobo was controlled by two major genes, partially by minor genes, when tested in Haidong, and analysis on infection type data results showed the most fitted genetic model for the resistance was C-6 2MG-EEAD, which is, two equal dominance effect major genes, but analysis on disease severity data, as well as tested in Xining, either analysis on infection type data or disease severity data, the most fitted genetic model for the resistance was C-1 2MG-ADI, two additive-major-epistatic interaction major genes.
keywords:spring wheat  Mobo(Potam-S70)  stripe rust resistance  inheritance model
查看全文  查看/发表评论  下载PDF阅读器
您是本站第  8739722 版权所有:植物保护学报    京ICP备05006550号-2  
主管单位:中国科协 主办单位:中国植物保护学会、中国农业大学 地址:北京市圆明园西路2号 中国农业大学植物保护学院 植物保护学报编辑部
电话:010-62732528 电子邮件:zbxb@cau.edu.cn
技术支持:北京勤云科技发展有限公司